首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15849篇
  免费   144篇
  国内免费   117篇
安全科学   326篇
废物处理   638篇
环保管理   1863篇
综合类   3635篇
基础理论   3619篇
环境理论   6篇
污染及防治   3950篇
评价与监测   1014篇
社会与环境   1013篇
灾害及防治   46篇
  2022年   103篇
  2021年   122篇
  2019年   102篇
  2018年   200篇
  2017年   193篇
  2016年   309篇
  2015年   238篇
  2014年   360篇
  2013年   1081篇
  2012年   400篇
  2011年   611篇
  2010年   469篇
  2009年   548篇
  2008年   633篇
  2007年   671篇
  2006年   602篇
  2005年   502篇
  2004年   526篇
  2003年   517篇
  2002年   486篇
  2001年   620篇
  2000年   389篇
  1999年   290篇
  1998年   183篇
  1997年   200篇
  1996年   220篇
  1995年   230篇
  1994年   230篇
  1993年   213篇
  1992年   195篇
  1991年   205篇
  1990年   196篇
  1989年   169篇
  1988年   168篇
  1987年   154篇
  1986年   153篇
  1985年   148篇
  1984年   169篇
  1983年   167篇
  1982年   172篇
  1981年   144篇
  1980年   132篇
  1979年   123篇
  1978年   134篇
  1977年   115篇
  1976年   103篇
  1975年   107篇
  1974年   118篇
  1971年   98篇
  1967年   101篇
排序方式: 共有10000条查询结果,搜索用时 21 毫秒
31.
Genetic diversity is a key factor for population survival and evolution. However, anthropogenic habitat disturbance can erode it, making populations more prone to extinction. Aiming to assess the global effects of habitat disturbance on plant genetic variation, we conducted a meta-analysis based on 92 case studies obtained from published literature. We compared the effects of habitat fragmentation and degradation on plant allelic richness and gene diversity (equivalent to expected heterozygosity) and tested whether such changes are sensitive to different life-forms, life spans, mating systems, and commonness. Anthropogenic disturbance had a negative effect on allelic richness, but not on gene diversity. Habitat fragmentation had a negative effect on genetic variation, whereas habitat degradation had no effect. When we examined the individual effects in fragmented habitats, allelic richness and gene diversity decreased, but this decrease was strongly dependent on certain plant traits. Specifically, common long-lived trees and self-incompatible species were more susceptible to allelic richness loss. Conversely, gene diversity decreased in common short-lived species (herbs) with self-compatible reproduction. In a wider geographical context, tropical plant communities were more sensitive to allelic richness loss, whereas temperate plant communities were more sensitive to gene diversity loss. Our synthesis showed complex responses to habitat disturbance among plant species. In many cases, the absence of effects could be the result of the time elapsed since the disturbance event or reproductive systems favoring self-pollination, but attention must be paid to those plant species that are more susceptible to losing genetic diversity, and appropriate conservation should be actions taken.  相似文献   
32.
Conserving freshwater habitats and their biodiversity in the Amazon Basin is a growing challenge in the face of rapid anthropogenic changes. We used the most comprehensive fish-occurrence database available (2355 valid species; 21,248 sampling points) and 3 ecological criteria (irreplaceability, representativeness, and vulnerability) to identify biodiversity hotspots based on 6 conservation templates (3 proactive, 1 reactive, 1 representative, and 1 balanced) to provide a set of alternative planning solutions for freshwater fish protection in the Amazon Basin. We identified empirically for each template the 17% of sub-basins that should be conserved and performed a prioritization analysis by identifying current and future (2050) threats (i.e., degree of deforestation and habitat fragmentation by dams). Two of our 3 proactive templates had around 65% of their surface covered by protected areas; high levels of irreplaceability (60% of endemics) and representativeness (71% of the Amazonian fish fauna); and low current and future vulnerability. These 2 templates, then, seemed more robust for conservation prioritization. The future of the selected sub-basins in these 2 proactive templates is not immediately threatened by human activities, and these sub-basins host the largest part of Amazonian biodiversity. They could easily be conserved if no additional threats occur between now and 2050.  相似文献   
33.
34.
This special issue of Ambio compiles a series of contributions made at the 8th International Phosphorus Workshop (IPW8), held in September 2016 in Rostock, Germany. The introducing overview article summarizes major published scientific findings in the time period from IPW7 (2015) until recently, including presentations from IPW8. The P issue was subdivided into four themes along the logical sequence of P utilization in production, environmental, and societal systems: (1) Sufficiency and efficiency of P utilization, especially in animal husbandry and crop production; (2) P recycling: technologies and product applications; (3) P fluxes and cycling in the environment; and (4) P governance. The latter two themes had separate sessions for the first time in the International Phosphorus Workshops series; thus, this overview presents a scene-setting rather than an overview of the latest research for these themes. In summary, this paper details new findings in agricultural and environmental P research, which indicate reduced P inputs, improved management options, and provide translations into governance options for a more sustainable P use.  相似文献   
35.
Changes in the vegetation and fire regimes in the central East European Plain during the second half of the Holocene have been reconstructed based on the results of paleobotanical analysis and radiocarbon dating of material from a section of peat deposit in the Mordovia State Nature Reserve. It has been shown that birch–pine forests were widespread in the region between 7000 and 5000 yr BP, with the frequency of fires in that period being high (the fire return interval ranged from 10–20 to 100 years). Beginning from 5000 yr BP and to the early 20th century, broadleaf forests were dominant, with the fire return interval increasing to 300–500 years or longer.  相似文献   
36.
37.
Forty-one livestock drinking water ponds in Alabama beef cattle pastures during were surveyed during the late summer to generally understand water quality patterns in these important water resources. Since livestock drinking water ponds are prone to excess nutrients that typically lead to eutrophication, which can promote blooms of toxigenic phytoplankton such as cyanobacteria, we also assessed the threat of exposure to the hepatotoxin, microcystin. Eighty percent of the ponds studied contained measurable microcystin, while three of these ponds had concentrations above human drinking water thresholds set by the US Environmental Protection Agency (i.e., 0.3 μg/L). Water quality patterns in the livestock drinking water ponds contrasted sharply with patterns typically observed for temperate freshwater lakes and reservoirs. Namely, we found several non-linear relationships between phytoplankton abundance (measured as chlorophyll) and nutrients or total suspended solids. Livestock had direct access to all the study ponds. Consequently, the proportion of inorganic suspended solids (e.g., sediment) increased with higher concentrations of total suspended solids, which underlies these patterns. Unimodal relationships were also observed between microcystin and phytoplankton abundance or nutrients. Euglenoids were abundant in the four ponds with chlorophyll concentrations >?250 μg/L (and dominated three of these ponds), which could explain why ponds with high chlorophyll concentrations would have low microcystin concentrations. Based on observations made during sampling events and available water quality data, livestock-mediated bioturbation is causing elevated total suspended solids that lead to reduced phytoplankton abundance and microcystin despite high concentrations of nutrients, such as phosphorus and nitrogen. Thus, livestock could be used to manage algal blooms, including toxic secondary metabolites, in their drinking water ponds by allowing them to walk in the ponds to increase turbidity.  相似文献   
38.
The objective of this work was to improve the impact and thermal properties of polylactic acid (PLA)-based biocomposite by appropriate application of cellulosic fiber and a bioelastomer. Biocomposites formulations with fiber contents of up to 20% in combination with a bioelastomer were extrusion-compounded in a twin-screw extruder followed by molding in an injection molding system. Fibers used in the formulations included three types of cellulosic fiber; namely, raw fiber from oat hull biomass (RF), hydrolysis byproduct (ATF) which was the solid fraction obtained from an acid-catalyzed hydrolysis of RF, and delignified fibers (AD30, AD65, AD100) which were the products of delignification of ATF. Formulated biocomposites were characterized for thermal (glass transition and melting temperatures, and enthalpy of melting) and physico-mechanical (tensile and bending strengths, stiffness, impact energy, and water absorption) properties. Among all types of biofibers, RF resulted in poor properties in the biocomposites due to the high hemicellulose content in the structure. On the other hand, the ratio of lignin to cellulose (in the absence of hemicellulose) in the modified fibers did not significantly affect the physico-mechanical and thermal properties of the biocomposites. The elastomer applied in the formulations improved the impact energy, thermal properties, and elongation at break of the composites. However, it adversely affected the strength and water resistance of biocomposites, especially in the presence of hemicellulose. The results indicated that, depending on the application, a wide range of PLA green composites with different physico-mechanical properties can be achieved.  相似文献   
39.
Inbreeding depression is an important long-term threat to reintroduced populations. However, the strength of inbreeding depression is difficult to estimate in wild populations because pedigree data are inevitably incomplete and because good data are needed on survival and reproduction. Predicting future population consequences is especially difficult because this also requires projecting future inbreeding levels and their impacts on long-term population dynamics, which are subject to many uncertainties. We illustrate how such projections can be derived through Bayesian state-space modeling methods based on a 26-year data set for North Island Robins (Petroica longipes) reintroduced to Tiritiri Matangi Island in 1992. We used pedigree data to model increases in the average inbreeding level (F ) over time based on kinship of possible breeding pairs and to estimate empirically Ne/N (effective/census population size). We used multiple imputation to model the unknown components of inbreeding coefficients, which allowed us to estimate effects of inbreeding on survival for all 1458 birds in the data set while modeling density dependence and environmental stochasticity. This modeling indicated that inbreeding reduced juvenile survival (1.83 lethal equivalents [SE 0.81]) and may have reduced subsequent adult survival (0.44 lethal equivalents [0.81]) but had no apparent effect on numbers of fledglings produced. Average inbreeding level increased to 0.10 (SE 0.001) as the population grew from 33 (0.3) to 160 (6) individuals over the 25 years, giving a ratio of 0.56 (0.01). Based on a model that also incorporated habitat regeneration, the population was projected to reach a maximum of 331–1144 birds (median 726) in 2130, then to begin a slow decline. Without inbreeding, the population would be expected stabilize at 887–1465 birds (median 1131). Such analysis, therefore, makes it possible to empirically derive the information needed for rational decisions about inbreeding management while accounting for multiple sources of uncertainty.  相似文献   
40.
Tool life has been a vital issue in machining titanium alloys. Recently, an atomization-based cutting fluid (ACF) application has been found to be an effective approach for cooling and lubrication in micromachining operations. In this study, an ACF spray system is developed for macro-scale turning of Ti–6Al–4V. The spray system is designed to minimize interaction between the fluid droplets, and the gas nozzle to control the divergence of the fluid droplets. Experiments are conducted to study the effect of five specific ACF spray parameters including fluid flow rate, spray distance, impingement angle, and type and pressure level of the droplet carrier gas on cutting forces, tool life, and chip characteristics. It has been observed that the combination of lower pressure (150 psi) air-mixed CO2 with a higher flow rate (20 ml/min) and a larger spray distance (35 mm) produces a significantly longer tool life and broken chips. The results also reveal that the ACF spray system can extend tool life up to 40–50% over flood cooling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号